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Abstract—The Internet of Medical Things (IoMT) stimulates
the development of intelligent medical applications. As mental
disorders become a global problem, emotion recognition has
received widespread attention, as it can contribute to more
comprehensive mental health monitoring and psychological as-
sessment. Physiological signal-based emotion-aware monitoring
is a particularly promising application due to its non-invasive
and objective data collection. Recently, multi-modal emotion
recognition has been enhanced with Wireless Body Area Network
(WBAN) access to IoMT, where wireless medical sensors are
interconnected and abundant signals are acquired conveniently.
However, how to synthesize these multi-source physiological sig-
nals to facilitate emotion recognition is a challenging problem due
to their heterogeneity and interference. To solve this problem, we
propose a real-time Differential Multi-modal Transformer (Diff-
MT), where the main components are the Differential Hyper-
information Extraction (DHE) module, the Multi-modal Global
Cross-attention Encoder (MGCE) and the Difference-augmented
Feature Fusion (DFF). Ultimately, we endow the system with
emotional awareness and distribute the state to IoMT devices.
Extensive experiments demonstrate that the proposed Diff-MT
exhibits superior performance compared to existing methods on
the WESAD and DEAP datasets and is appropriate for IoMT-
based healthcare.

Index Terms—Internet of Things, Emotion recognition, Phys-
iological signal analysis, Deep learning

I. INTRODUCTION

THE Internet of Things (IoT) is the primary promoter of
intelligent applications, integrating holistic sensing [18],

reliable transmission [26], and intelligent processing [13]. As
the embodiment of IoT in healthcare, the Internet of Medical
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Fig. 1. The schema of the proposed IoMT-based emotion-aware system.
Sensors connected to the WBAN collect a variety of physiological signals and
transmit them into the database of the IoMT through wireless communication
technology. By deploying the proposed Diff-MT model on the server, these
signals will be processed and analyzed, and the deduced emotional states will
be delivered to the terminal devices to assist intelligent medical applications.

Things (IoMT) facilitates many intelligent medical applica-
tions, such as humanoid guide robots, auxiliary diagnosis, and
intelligent monitoring [41]. Mental health problems are one
aspect of health that is often overlooked, such as depression
and anorexia, affecting millions of people around the world
[42]. Therefore, emotion perception is vital for IoMT-based
healthcare applications. Sentiment monitoring helps prevent,
diagnose, and cure mental disorders. Additionally, emotional
feedback assists with the creation of personalized services and
more friendly human-computer interaction.

Human emotion is a comprehensive cue that manifests our
consciousness, behavior, and health. Human emotions can be
manifested through both physiological and non-physiological
signals. Non-physiological signals refer to facial expressions,
voice tone, body posture, etc. Compared with these behavioral
hints, which may be disguised, physiological signals such
as Electroencephalogram (EEG), Electrocardiogram (ECG),
Respiration (RESP), Blood Volume Pulse (BVP), and Elec-
trodermal Activity (EDA) are more objective and reliable. In
addition, the physiological signal has the natural advantage of
low data volume, which is more suitable for sustainable and
efficient intelligent monitoring. Therefore, emotion recognition
based on physiological signals has received extensive attention
and is seen as a promising route.

Most existing methods utilize a single physiological signal
for emotion recognition [5], [8], [20], [35], rendering them
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Fig. 2. The flowchart of the proposed Diff-MT. It comprises DHE, MGCE, and DFF modules for signal processing, feature extraction, and multi-modal
feature fusion, respectively. It acquires multi-modal physiological signals via biological sensors connected by WBAN. After emotion classification, Diff-MT
delivers human affective states to cloud services, contributing to healthcare applications.

one-sided and limited scenarios. Mental disorders are always
accompanied by abnormalities of multiple physiological indi-
cators, so leveraging multiple sensors is a more comprehensive
and robust strategy. Furthermore, by employing a single signal,
we cannot exclude external interference. With the Wireless
Body Area Network (WBAN) connected to the IoMT ecosys-
tem, obtaining multiple signals by connected wireless sensors
in/around the human body is more convenient. However, an
efficient emotion-aware system oriented to IoMT applications
based on these WBANs has yet to be fully developed.

For the purpose of designing such an application, we inves-
tigate emotion-aware schema from multiple sensor signals in
WBAN, as depicted in Fig. 1. We regard signals collected from
various sensors as multi-modal data to transform the problem
into multi-modal signal analysis. That is, given multiple sensor
signals, the corresponding emotion categories need to be
predicted and output by the system. With the accumulation of
signals, developing a neural network to process and analyze
these data from WBAN is reasonable. However, due to the
heterogeneity of multi-modal physiological signals, this work
mainly encounters the following challenges.

First, time synchronization and feature alignment are in-
tractable. Different medical sensors have varying sampling
frequencies and channels, resulting in different lengths and
distributions of acquired signals even during the same interval.
Taking the WESAD [31] dataset as an example, the sampling
frequency for the RESP signal is 700Hz, whereas for the EDA
signal, it is only 4Hz. Second, to limit the effects of biased or
irrelevant information in feature fusion, it is necessary to mine
latent and long-term dependencies across modalities. However,
there are significant differences in how these signals respond to
emotional changes. For instance, when experiencing stress, the
BVP signal exhibits pronounced fluctuations (see Fig. 2(a)).
In contrast, the fluctuations in the EDA signal are subtle in
the stress state but are evident during the amusement state.

To surmount the above issues, we introduce a deep learning

framework named Differential Multi-modal Transformer (Diff-
MT) to process multi-sensor physiological signals for emo-
tion recognition. As shown in Fig. 2(b), it processes signals
through a Differential Hyper-information Extraction (DHE)
module, extracting features using a Multi-modal Global Cross-
attention Encoder (MGCE) module, fusing multi-modal fea-
tures through a Difference-augmented Feature Fusion (DFF)
strategy. After emotion classification, Diff-MT can deliver
human emotional states and assist in intelligent healthcare
applications and cloud services. Overall, the contributions of
our work are summarized as follows.

• We propose an emotion-aware scheme based on IoMT
to supplement human-centered medical applications. At
the communication level, we leverage WBAN to achieve
radio efficient data transmission between medical sensors
and other devices in IoMT. At the processing level, we
realize multi-modal signal feature fusion and sentiment
analysis.

• We introduce a novel deep learning framework, Diff-MT,
for multi-modal physiological signal processing, feature
extraction, feature fusion, and emotion recognition. DiFF-
MT mainly includes DHE, MGCE, and DFF modules and
is compatible with widespread signal-based approaches.

• Our method achieves promising accuracy and real-time
performance on two public datasets, WESAD and DEAP.
The experimental results demonstrate that it is appropriate
for IoMT-based services.

The rest of this article is organized as follows. Section II
reviews the emotion-aware technology based on physiological
signals. Section III introduces the implementation of Diff-
MT. Section IV reports experimental results, and Section V
analyzes the effectiveness of components contained in Diff-
MT. Then, we discuss the applications and limitations in
Section VI. Finally, we summarize this work in Section VII.
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II. RELATED WORK

A. Emotion Recognition Based on Physiological Signals

Compared with non-physiological signals, such as facial
expressions, voice tone, and body posture, which are emotional
manifestations that may be disguised, physiological signals
have the advantages of objectivity and reliability. Therefore,
emotion recognition methods based on physiological signals
have received widespread attention, especially in fields such
as healthcare that require objective emotional evaluations.
Physiological signals are mainly collected by non-intrusive or
intrusive sensors. Wearable sensors, which are non-intrusive,
are widely used in healthcare applications because of their
comfort and portability. The collected physiological signals
like EEG, ECG, RESP, EDA, BVP, Electrooculogram (EOG),
Electromyogram (EMG), Galvanic Skin Response (GSR), tem-
perature, photoplethysmogram, and heart rate variability are
commonly utilized for emotion analysis due to their objec-
tivity and low-power dissipation. In the early stage, emotion
analysis methods mainly adopted a single modality. Choi et
al. [5] constructed the deep learning model Attention-LRCN
to extract temporal features and reduce the effect of noises
in photoplethysmogram signals through an attention module.
Gao et al. [20] proposed an EEG-based method using coinci-
dence filtering and simulated the information extraction pattern
of artificial-features-based methods to design Convolutional
Neural Networks (CNNs). However, relying on single-modal
indicators to reflect sentiment may result in the problem of
one-sidedness and contingency. In addition, once this signal is
externally disturbed, it will greatly mislead the judgment of the
emotion recognition system. Considering the complementarity
among various signals, we are motivated to employ multi-

modal signals to provide a more comprehensive and precise
scheme.

B. Multi-modal Emotion Recognition

With the development of sensor devices, a variety of physio-
logical signals can be collected conveniently. Afterward, multi-
modal physiological datasets of human affective are available,
such as DEAP [16] and WESAD [31], allowing emotion
recognition based on multi-modal sensor signals to flourish.
Souza et al. [7] proposed a novel pipeline for identifying
stress sequences through Recurrent Neural Network (RNN)
with Gaussian noise layers. The five modalities, including
ECG, EDA, RESP, EMG and temperature, are fed into the
pipeline. This paradigm of early fusion ignores the cross-
modal information correlation between signals. To employ
the complementarity of multi-modal information, Rashid et
al. [29] proposed a late fusion method, namely, SELF-CARE.
They determined the noise context using EMG or motion
acceleration of a subject and performed Kalman filter-based
late fusion methods after feature extraction for classification.
To enhance multi-modal learning, many researchers have at-
tempted to mid-level feature fusion. Bhatti et al. [3] presented
an attentive cross-modal connection between CNNs to share
intermediate representations among ECG and EDA signals.
However, these practices still have limitations in effectively
capturing the high-level correlation between multi-modal fea-
tures, which decreases their performance. In addition, such
asynchronous signal processing and redundant neural networks
aggravate the computational and time consumption of previous
methods, which are challenging to meet real applications. In
this work, we design a lightweight deep learning framework
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Fig. 3. The framework of the proposed Diff-MT. Diff-MT takes multi-modal physiological signals (a) as the input. For instance, the inputs are ECG, EDA,
RESP, and BVP signals on the WESAD dataset. In Diff-MT, each modality is encoded simultaneously using a multi-branch structure that contains embedded
DHE (b) and MGCE (c) modules. Next, representations of the multi-modal signals are fused through the DFF module (d). Finally, fully connected layers and
Softmax are employed for emotion recognition.
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and utilize wireless body area networks to efficiently process
multiple signals and secure data transmission, making it suit-
able for IoMT-based intelligent healthcare applications.

III. METHODS

In this section, we present the construction of Diff-MT
depicted in Fig. 3. Diff-MT is a multi-branch neural network
embedded with DHE, MGCE, and DFF modules. Among
them, the DHE module aligns the multi-modal physiological
signals and generates differential hyper-information hierarchi-
cally. The MGCE module identifies the potential relationship
between each modality and global modality features. The
DFF module is responsible for fusing high-level multi-modal
features and feeding them to the classifier for emotion recog-
nition.

A. Differential Hyper-Information Extraction

Multi-sensor signal alignment. The physiological signals
collected by multiple sensors are heterogeneous due to the
varying settings of signal sources, such as sampling fre-
quency and signal length. As a result, the received signals
are asynchronous, have different lengths, and contain different
data channels. Thus, a preprocessing scheme is necessary
before signal analysis. We propose the DHE module to align
these multi-modal signals and generate differential hyper-
information hierarchically, as depicted in Fig. 3(b). The multi-
modal signal alignment process consists of three steps. To
achieve time synchronization, we segment multi-source signals
into samples with a duration of 1s according to the sampling
frequencies. After that, samples record the emotional state
of the same duration, facilitating synchronous transmission
and second-level response. To achieve channel alignment, we
employ 1D convolutions to project various signals into a

feature space of the same dimension in an end-to-end manner.
Then, the aligned multi-modal features can be conveniently
cascaded to obtain preliminary multi-modal fusion features.
Specifically, given a sample Xm ∈ RNm×Cm

, where Nm

represents the sampling steps of the corresponding sensor
m and Cm is the number of channels, the corresponding
preprocessed sequence X̄m can be obtained by the following
equation

X̄m = Conv1D (K,Xm) , X̄m ∈ RNm×C (1)

where C is the number of channels after feature alignment.
Conv1D is a temporal convolution with kernel size K. On this
basis, a multi-modal sequence X̄M ∈ RN×C can be obtained
by cascading. To illustrate the technical details of multi-modal
signal alignment, we provide an example in Fig. 4. Finally,
we adaptively realize multi-modal signal alignment, laying the
foundation for mining the cross-modal complementarity and
real-time emotional feedback.

Hierarchical sequence differencing. Physiological signals
are prone to unintended external interference or noise from
sensors, compromising accuracy and reliability. To emphasize
valid data and fully exploit the dynamic patterns of physio-
logical signals, we extract differential hyper-information, as
illustrated in Fig. 3(b). We first conduct a sliding window
operation on the aligned features to yield clipped features. As-
suming that the H0 layer has n windows, and the window size
w is C/n. Then, spaced window sampling and differencing
are performed hierarchically according to predefined strides.
The differences obtained by various strides describe the multi-
range dynamics of emotional signals in different temporal
spans. Integrating these differences leads to more discrimi-
native sentiment patterns, i.e., hierarchical hyper-information
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Fig. 4. An example of multi-modal signal alignment. We illustrate the alignment process for two different modal signals in three steps: temporal alignment,
channel alignment, and feature fusion. The input is two signal samples of duration 3s, where X1 ∈ R4×3and X2 ∈ R5×2. After segmentation and alignment,
it transforms into three multi-modal samples with the same shape X̄M ∈ R9×4.
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X̂m′
. Mathematically, given the DHE module with H layers,

the differential hyper-information can be obtained by Eq. (2).

X̂m′
= Concat H

h=1

(
Concat n−S(h)

i=0

(
X̄m

h,i+S(h) − X̄m
h,i

))
(2)

where the differencing stride set S ⊆ {1, 2, . . . , h}, and
|S| 6 h 6 n. S(h) is the differencing step of the hth layer.
X̂m

h,i ∈ RNm×w is the representation of the ith window in
the hth layer. We employ the cascade function Concat(·) to
combine the differences of each layer and integrate them to
obtain the hierarchical hyper-information, which effectively
reflects the global fluctuation of the physiological signals
and reveals their temporal dynamics in a refined manner.
Moreover, it can reduce the impact of perturbations and
increase the system’s robustness. By default, H is set to 3,
and sliding windows are non-overlapping. Furthermore, we
fuse the hyper-information with original signals to avoid any
loss of information as follows.

X̂m = ϕ
(

Concat
(
X̂m′

, X̄m
))

(3)

where ϕ(·) represents linear transformation. Then, the multi-
modal feature X̂M ∈ RN×C enhanced with hierarchical
hyper-information is obtained by cascading X̂m.

B. Multi-modal Global Cross-Attention Encoder

By fusing multi-modal emotion signals, we can capitalize
on the complementarities between them and stimulate the
development of emotion analysis techniques. However, it is
challenging to do so due to the multiplicity and heterogeneity
of multi-modal signals from various sensors. Providing a latent
adaptation across modalities is an excellent way to fuse cross-
modal information. Thus, we propose the MGCE module
presented in Fig. 3(c) to reveal the global relationship between
a specific modality and other modalities. We focus on mid-
level feature fusion to address the issues of modal bias and
information redundancy. The MGCE module contains posi-
tional embedding, global cross-attention, and self-attention.

Positional embedding. Biological signals are essentially
time series data where timestamps carry significant informa-
tion. To ensure that the encoded emotional features emphasize
temporal information, we introduce positional embedding [33].
In mathematical terms,

P [i, 2j] = sin

(
i

10000 2j
c

)
i ∈ {0, 1, . . . , N}

P [i, 2j + 1] = cos

(
i

10000 2j
C

)
j ∈

{
0, 1, . . . , bC

2
c
} (4)

where i and j are the indexes of feature tensors. Leveraging
sine-cosine encoding, positional embedding generates a matrix
with unique locations. Then, we add the acquired positional
embedding to the extracted features to preserve temporal
semantics in signal processing.

Global cross-attention. Cross-attention is a good practice
for cross-modal fusion. It generates attention weights for each
paired modality by learning their local correlations. Unlike
existing approaches, we focus on the global relevance between

Algorithm 1: Diff-MT
Input: multi-modal physiological sensor signals

X = {X1, X2, . . . , XM}
Output: the recognition result of emotional state ŷ

1 Initialize
2 for i← 1 to M do

// multi-modal signal alignment

3 align channels by Eq.(1) to get X̄i

// hierarchical sequence differencing

4 segment X̄i according to the window w

5 calculate the difference X̂i′ by Eq.(2)
6 perform Eq.(3) to yield hyper-information X̂i

// differential hyper-information fusion

7 multi-modal differences X̂M′ ←Concat
(
X̂i′

)
8 multi-modal hyper-information X̂M ←Concat

(
X̂i

)
9 end
// multi-modal global cross-attention encoding

10 for j ← 1 to M do
11 embedding position by Eq.(4)
12 get global crossmodal feature X′j by Eq.(5)
13 global crossmodal feature X′M ←Concat

(
X′j

)
14 end

// difference-augmented feature fusion

15 calculate multi-modal emotion feature X̃M by Eq.(6)
// classification

16 generate the output ŷ by Eq.(7)
17 return ŷ

every modality and all the involved modalities, including
itself. To this end, we design a global cross-modal attention
mechanism that allows one modality to receive global latent
adaptation. Specifically, we first obtain the query Qm about
X̂m and the KM , VM for the global feature X̂M by three
transformations WQ

m, WK
M , and WV

M , respectively. On
this basis, the global cross-attention encoding X ′m can be
obtained by the function G(·). In particular,

G
(
X̂m, X̂M

)
= SoftMax

(
QmK

T
M√

C

)
VM

= SoftMax

 X̂mWm
Q

(
X̂MWM

K

)T
√
C

 X̂MWM
V .

(5)
We set up a three-head attention to obtain cross-modal

correlations across different feature spaces and construct the
MGCE module, as shown in Fig. 3(c). The MGCE is more
efficient than the pair-wise relational modeling approach,
especially for processing more than two modalities. We design
an M -branch network structure with M branches stacked with
L MGCE layers to perform the parallel encoding task, making
Diff-MT more time-friendly (see Section IV). In this work, we
set M = 4 and L = 1 by default. We also facilitate training
stability through residual connections and layer normaliza-
tion. Then, the global cross-attention encoded feature X ′m is
obtianed through forward propagation, embedding high-level
relevance across modalities adaptively.

C. Difference-Augmented Feature Fusion

Different physiological signals reflect human emotional
states from various perspectives. To fully utilize the comple-
mentary nature of multi-modal signal features, we design the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3458976

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hohai University Library. Downloaded on September 30,2024 at 00:37:22 UTC from IEEE Xplore.  Restrictions apply. 



6

DFF module. As depicted in Fig. 3(d), DFF fuses the hierarchi-
cal hyper-information with the weights of relevant modalities.
First, the features X ′m are cascaded to obtain the global
multi-modal signal representation X ′M . Second, we cascade
the differential hyper-information X̂m′

(see Section III.A) as
the initialized differential multi-modal features X̂M ′

. Then,
we pass these two features through multiple self-attention
layers to generate the adaptive cross-modal representation and
the higher-order differential information, respectively. Finally,
they are weight-fused to improve the discriminative properties
of the multi-modal features. Mathematically, the final cross-
modal features can be obtained by the following equation.

X̃M = (1− α) ·Attn
(
X̂M′)

+ α ·Attn
(
X ′M

)
(6)

where Attn(·) represents the self-attention module with a
default of 5 layers. The learnable parameter α regulates the
weight of differential hyper-information during cross-modal
fusion. The extracted emotional features from multi-modal
emotional signals will go through the classification head,
resulting in the emotion state ŷ, as shown in Eq. (7).

ŷ = Softmax
(
FC

(
GAP

(
X̃M

)))
(7)

where GAP is the global average pooling and FC is the
fully connected layer. The Diff-MT model can effectively
capture and identify discriminative emotion patterns reflected
by multi-modal physiological signals, enhancing performance
on sensor-based emotion recognition tasks. Concretely, the
forward propagation of Diff-MT is shown in Algorithm 1.

IV. EXPERIMENTS

A. Datasets

DEAP dataset. The DEAP [16] dataset involves 32 partic-
ipants who watched 40 distinct music video clips designed to
evoke different emotional states. The participants assess their
emotional states of arousal, valence, liking, and dominance on
a scale of 1 to 9 according to the self-assessment manikin [4].
The collected physiological signals include EOG, EEG, EMG,
and GSR. In this work, we utilize the official preprocessed
datasets and exclude the baseline recording. We regard every
1s signal as a sample, resulting in 76800 samples. We classify
the scale ratings (1-9) into three levels: negative (1-3), neutral
(4-6), and positive (7-9) for non-binary classification. We also
categorize negative and positive emotions with a threshold of
5 for binary classification. We set aside samples of one subject
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Fig. 5. The training curve of Diff-MT. We reported the first-fold and leaving-
the-first-subject validation on the WESAD and DEAP datasets, respectively.

as the test set and the other as the training set. After performing
leave-one-subject-out trials, we take the average result as the
final.

WESAD dataset. The WESAD [31] dataset contains EDA,
BVP, EMG, ECG, and RESP signals collected by RespiBAN
and Empatica E4 placed on the chest and wrist. The WESAD
dataset is compiled from 15 participants, 12 males and 3
females. During testing, participants try to close their eyes to
elicit a neutral state. For the stress state, participants engage
in speaking about their traits in front of panels. To produce
the amusement state, participants watched funny videos. In
this paper, we treat per-second signals as a sample for a total
of 27287 samples, and perform binary (stress vs. non-stress)
and non-binary (stress, neutral, and amusement) classification.
The final experimental result is the average of 10-fold cross-
validation. We report the average accuracy and F1-score met-
rics of the experiments.

B. Training Details

We utilize cross-entropy as the loss function and SoftMax
as the classifier. To avoid overfitting, we adopt data shuffling
and dropout tricks. We also employ the adaptive scheduling
strategy, i.e., when the loss function on the validation set does
not decrease for successive ten epochs, the learning rate is
multiplied by 0.1. For the WESAD dataset, we train Diff-MT
with 100 epochs, and the learning rate is initialized to 0.002.
For the DEAP dataset, the epoch is set to 300, and the initial
learning rate is 0.005. The batch size for WESAD dataset is
set to 512, while for the DEAP dataset it is set to 1024. Fig. 5
shows the training curve of Diff-MT for non-binary emotion
recognition.

C. Results and Comparations with SOTAs

Cross-validation results. The final result of Diff-MT is the
average of multiple cross-validation results by default. In order
to disclose more experimental details, we further report the
experimental results of cross-validation. Fig. 6 illustrates the
10-fold cross-validation results of Diff-MT on WESAD dataset
(non-binary classification). We obtain high performance on
each fold of validation data, where the optimal accuracy is as
high as 96.19%, and the optimal F1-score is as high as 95.62%.
Although physiological signals are highly objective, there
is still some degree of individual variation. This intra-class
variation makes the emotion recognition task challenging. Fig.
7-8 illustrates the results of leave-one-subject-out testing on
the DEAP dataset (non-binary classification). As we can see,
our method is generally robust and achieves promising average
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Fig. 6. Results of 10-fold cross validation on the WESAD dataset.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3458976

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hohai University Library. Downloaded on September 30,2024 at 00:37:22 UTC from IEEE Xplore.  Restrictions apply. 



7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 mean
Subjects

60

70

80

90

100

Ac
cu

ra
cy

(%
)

Arousal Valence

Fig. 7. Mean accuracy of leave-one-subject-out trails on the DEAP dataset.
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Fig. 8. Mean F1-Score of leave-one-subject-out trails on the DEAP dataset.

TABLE I
THE COMPLEXITY AND PERFORMANCE OF DIFF-MT COMPARED WITH OTHER METHODS

Dataset Train n Test n Model Modality Acc.(%) F1(%) Train t(s) Inference t(ms) Para.(M)

DEAP 74400 2400

LSTM* [44] EEG 54.71 50.38 875.13 4.39 4.82
CNN-LSTM* [45] EEG 58.02 55.24 328.12 1.84 1.12

Segade* [10] EEG 48.76 41.85 106.53 0.67 0.22
EEG-Net* [43] EEG 54.14 43.80 109.95 0.21 0.02
Tseption* [8] EEG 54.10 44.54 13.60 0.12 0.07
Diff-MT(ours) EEG+EOG+EMG+GSR 89.62 84.96 19.24 0.17 0.91

WESAD 24558 2729

LSTM* [44] ECG 92.45 91.33 470.58 7.70 4.41
CNN-LSTM* [45] ECG 94.21 93.54 74.62 4.17 0.19

Segade* [10] ECG 80.14 77.38 46.83 1.53 2.02
EEG-Net* [43] ECG 58.34 43.43 6.43 0.25 0.01
Tseption* [8] RESP+ECG 82.52 79.95 2.49 0.23 0.11
Diff-MT(ours) RESP+BVP+ECG+EDA 94.78 93.98 12.22 0.35 0.28

1 We report the average training time for one epoch and the average inference time for one sample.
2 These methods marked * are the ones we reproduced in the same experimental settings.

accuracies of 89.62% and 90.02% on the arousal and valence
data in the DEAP dataset, respectively.

Complexity and real-time performance. Healthcare ap-
plications often demand prompt feedback, so we focus on the
model’s complexity and real-time performance. To prove the
superiority of Diff-MT, we compare its number of parameters,
training time, and inference time with other methods, as shown
in Table I. We reproduce some signal processing methods in
the same experimental environment, including LSTM [44],
CNN-LSTM [45], Segad [10], EEG-Net [43], Tseption [8].
We report the three-class accuracy and F1-Score on DEAP
(arousal) and WEAD datasets. It can be seen that Diff-MT
shows promising real-time performance on the DEAP and
WESAD datasets, and each sample’s average inference time is
only 0.17 ms and 0.35 ms, respectively. Although the single
sample inference time of EEG-Net [43] and Tseption [8] is
slightly faster than our method, their recognition performance
is far behind ours. It is worth noting that although we use four
modalities of emotion signals for analysis, the additional data
has little impact on the inference speed of our method but
dramatically improves the accuracy of emotion recognition.
We can conclude that Diff-MT achieves the optimal trade-

off between performance and complexity and is qualified
to provide a reliable emotion-aware response for IoT-based
medical applications.

Comparisons with state-of-the-art methods. In order to
demonstrate that the proposed method can effectively recog-
nize emotion, we perform binary and non-binary classification
tasks on two publicly available datasets and compare the
experimental results with existing methods. The corresponding
acurracy and F1-score are shown in Table II and Table III.
For the DEAP dataset, Diff-MT achieves 94.83% and 93.95%
accuracy for binary classification on the condition of valence
and arousal, respectively. For non-binary classification, Diff-
MT yields 90.62% and 89.62% with valence and arousal,
respectively. It is more advantageous in temporal modeling
compared to RNN-based methods [19] and LSTM-based
methods [15], [25]. For the WESAD dataset, our method
achieves the desired performance with an average accuracy
and F1-score of 98.91% and 98.83% for binary classification,
respectively. For non-binary classification, Diff-MT obtains
the highest accuracy of 94.78% and F1-score of 93.98%. As
shown in Table III, Diff-MT outperforms the state-of-the-
art methods Attention-LRCN [5] and SELF-CARE [29] on
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TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DEAP

DATASET.

Binary Classification

Methods Valence Arousal YearF1 Acc F1 Acc
John et al. [1] - 73.14 - 73.06 2016

BDAE [23] - 85.20 - 80.50 2016
Zhang et al. [35] - 73.06 - 80.78 2017

PCRNN [34] - 90.80 - 91.03 2018
MMResLSTM [25] - 92.30 - 92.87 2019

CRNIN [19] - 91.95 - 93.06 2020
PCC [22] - 89.49 - 92.86 2020

NeuCube + variance [24] - 78.00 - 74.00 2020
LF-DfE [15] - 75.50 - 76.00 2021

DCERNet-SVM [27] - 88.10 - - 2022
He et al. [11] - 64.33 - 63.25 2022

E-EmotiConNet [14] - 93.09 - 93.69 2022
TSception [8] 62.33 59.14 63.24 61.57 2022

Zhang et al. [36] - 84.27 - 85.86 2023
Diff-MT (ours) 94.29 94.83 91.86 93.95 -

Non-binary Classification
Liu et al. [4] - 53.40 - 51.00 2012

John et al. [1] - 62.33 - 60.70 2016
Samarth et al. [32] - 66.79 - 57.58 2017
Zheng et al. [37] - 69.67 - - 2019

DCERNet-SVM [27] - 86.50 - - 2022
Diff-MT (ours) 86.62 90.02 84.96 89.62 -

both binary and non-binary classification tasks. In general, our
method substantially outperforms existing approaches and is
able to provide more reliable emotional feedback.

Visualization of confusion matrixes. To illustrate how the
model recognizes different emotion categories, we visualize
the confusion matrix of the classification results. As shown
in Fig. 9(a-c), Diff-MT performs outstandingly in binary clas-
sification tasks on both datasets. Diff-MT detects emotional
stress on the WESAD dataset with an accuracy of 98.57%.
The negative emotion recognition accuracies on the DEAP
dataset labeled arousal and validity were 93.23% and 94.92%,
respectively. In addition, Diff-MT also performs accurately on
the non-binary classification task, as described in Fig. 9(d-f),
especially on the DEAP dataset, with an accuracy of 97.58%
when attempting to recognize negative emotional state in the
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Fig. 9. Confusion matrix for WESAD and DEAP datasets.

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE WESAD

DATASET.

Methods Binary Non-binary Year
F1 Acc F1 Acc

Schmidt et al. [31] - 93.12 - 80.34 2018
Sirat et al. [30] 90.20 94.70 75.80 83.40 2020
Transformer [2] 83.30 91.10 - - 2021

SMA [17] 97.74 97.75 82.95 88.28 2021
StressNAS [12] - 92.87 - 83.43 2021

AttX [16] 91.11 92.08 - - 2021
sTree [40] 95.10 95.80 - - 2021
U-Net [38] - - - 91.14 2021

Lisowska et al. [21] 83.70 - - 65.30 2021
Bhatti et al. [3] 91.10 92.80 - - 2021

H-CNN [28] 86.18 88.56 64.15 75.21 2021
Garg et al. [9] 83.34 84.17 65.73 67.56 2021
MoStress [7] - 86.00 2022

Choi et al. [6] 95.47 97.11 - - 2022
SELF-CARE [29] 92.93 94.12 71.97 86.34 2023

Deep CNN-CBAM [39] 97.10 97.50 - - 2023
Attention-LRCN [5] 98.13 98.44 76.24 88.21 2023

Diff-MT (ours) 98.83 98.91 93.98 94.78 -

arousal condition. In addition, on the WESAD dataset, Diff-
MT identifies emotions with an accuracy higher than 93% in
both labels, demonstrating the potential of Diff-MT for finer-
grained emotion analysis. Although Diff-MT has limitations in
recognizing neutral samples due to the unbalanced distribution,
it can overall recognize human emotional states effectively.

V. ABLATION STUDY

This section explores the validity of Diff-MT and its com-
ponents. We report the three-class classification results on the
WESAD dataset with 10-fold cross-validation by default.

The effectiveness of modules in Diff-MT. The proposed
emotion-aware system Diff-MT consists of three main mod-
ules: DHE, MGCE, and DFF. The DHE serves to prepro-
cess multi-modal signals and generate hierarchical hyper-
information. The MGCE includes the position embedding and
cross-attention layers, which focus on mining the potential
correlation of each modality with global modality features.
Finally, the DFF is responsible for extracting high-level multi-
modality features. We conduct ablation experiments on these
components, and the experimental results are shown in Table
IV. It can be seen that all of these modules are practical and
improve the model’s performance. Adding the DHE module
can increase accuracy by 1.64%. Utilizing the MGCE module
can improve accuracy by 1.28%. In addition, the PE and
the learnable parameter also optimize Diff-MT. The Diff-MT

TABLE IV
COMPARISON OF DIFF-MT AND ITS VARIANTS.

Variants Accuracy(%) F1-Score(%)
Diff-MT w/o DHE 93.14 92.45
Diff-MT w/o PE 94.70 93.85
Diff-MT w/o MGCE 93.50 93.12
Diff-MT w/o DFF 93.53 93.25
Diff-MT w/o α 94.10 93.38
Diff-MT (ours) 94.78 93.98
1 PE is positional embedding in Section III.B.
2 α is the learnable parameter in Eq. (6).
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Fig. 10. Visualization of differential hyper-information. Upon comparison
of the original signal (a) with its corresponding processed differential hyper-
information (b) of the WESAD dataset.

model with the DFF module removed loses 1.25% accuracy
and 0.73% F1-Score, indicating that the differential hyper-
information is essential to the Diff-MT model. Overall, our
proposed modules are practical and contribute to the success
of Diff-MT. Moreover, these modules are compatible and can
be ported to other models to enhance the accuracy of emotion
recognition.

Influence of Differential Hyper-information. Table IV
demonstrates the importance of the DHE module, which is
responsible for extracting differential hyper-information. This
components greatly benefits the proposed Diff-MT in two
ways. First, it enhances the registration of how physiologi-
cal signals change with emotion by hierarchically capturing
higher-order information. Second, the hyper-information is
fused with multi-modal features after cross-attention encoding,
elevating the overall recognition accuracy. To more intuitively
illustrate the positive impact of differential hyper-information
on physiological signal modeling, we provide a visualization
of the encoded multi-modal differential features in Fig. 10. It
can be seen that this module is compatible and can be applied
to different modalities of emotional signals. As expected, the
generated differential hyper-information offers more details
and emphasizes signal changes while retaining global trends,
enabling the model to capture more distinctive multi-modal
emotion features.

Combinations of multi-sensor signals. Leveraging physi-
ological signals can provide comprehensive diagnostic indica-
tors assisting healthcare applications. However, adding more
modalities may not always lead to better results, and reducing
redundant features and mutual interference is challenging. We
explore the effects of different signals and their combina-
tions, as displayed in Fig. 11. Employing the ECG signal
captures more emotional information, achieving an F1-score
and accuracy of 85.72% and 88.17%. For bimodal signals, we
recommend the ensemble of BVP and ECG, as experiments
have proven that they complement each other well. On this
basis, increasing the EDA accessorially enhances the F1-score
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Fig. 11. The results of different modal signals on the WESAD dataset.

and accuracy by 2.96% and 2.56%, respectively. Diff-MT per-
forms best with four-modal feature fusion, achieving 93.98%
F1-score and 94.78% accuracy. In addition, we illustrate the
compatibility of Diff-MT to various signals with Receiver
Operating Characteristic (ROC) curves, shown in Fig. 12. On
the whole, fusing multi-source signals is generally better than
only covering a single signal. Promising results were achieved
under all combination setups, except for the single-modal
setting, where the effect on EDA and BVP was restricted.
The above variants have a slightly lower recognition ability
for neutral emotions (blue curve) than other labels, caused by
unbalanced sample data.

VI. DISCUSSIONS

The proposed emotion-aware system has extensive potential
applications, such as mental health monitoring, stress manage-
ment, resilience building, and enhancement of virtual reality
therapy. For instance, it can be employed to assess emotional
states and stress levels in individuals with autism spectrum dis-
order who have communication and mental disorders, provid-
ing a more personalized and comfortable approach to treatment
and recovery. We believe that the proposed emotion-aware
system will have significant implications for human-centric
artificial intelligence, especially in healthcare. However, this
work still has some limitations. The individual variation in
emotional reaction is a critical factor that impacts the ability
to recognize emotions. Although our method achieves satisfac-
tory performance on emotion perception for most subjects, the
performance of specific individuals still needs to be improved.
It will be significant to provide more personalized services for
patients or other users. Moreover, this work mainly focuses on
the binary and ternary classification tasks of sentiment. With
the rapid advancement of human-centered artificial intelligence
technology and the increasing demands of diverse scenarios,
providing fine-grained emotion perception will be even more
essential.

VII. CONCLUSION

In this article, we present a novel IoMT-perspective frame-
work for emotion recognition based on multiple sensor signals
in WBAN to facilitate intelligent healthcare. We introduce
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Fig. 12. The ROC curves for models with different signals. Labels 0, 1, and 2 correspond to “stress”, “amusement”, and “neutral”, respectively. The closer
the curve is to the upper left corner, the better the classification performance. It can be seen that Diff-MT can deal with single-modal and multi-modal signals
and performs well in recognizing emotions, especially stress states.

the deep learning model named Diff-MT, which consists
of DHE, MGCE, and DFF modules and can extract multi-
modal signal features without manual feature engineering for
emotion recognition. It is a versatile signal processing model,
which can potentially be employed for other physiological
signal analysis. We conduct the experiments on the two
public datasets: WESAD and DEAP. The results show that
our method is real-time and achieves excellent recognition
accuracy and high performance in binary and non-binary
classification tasks, a fact that has significant advantages in
emotion-aware IoMT-based applications. Our future work will
focus on personalized emotion recognition for specific subject
and fine-grained sentiment perception.

REFERENCES

[1] J. Atkinson and D. Campos, “Improving BCI-based Emotion Recogni-
tion by Combining EEG Feature Selection and Kernel Classifiers,” in
Expert Syst. Appl., vol. 47, pp. 35-41, 2016.

[2] B. Behinaein, A. Bhatti, D. Rodenburg, P. Hungler, and A. Etemad, “A
Transformer Architecture for Stress Detection from ECG,” in Proc. Int.
Symp. Wearable Comput. (ISWC), Virtual, USA, 2021. pp. 132-134.

[3] A. Bhatti, B. Behinaein, D. Rodenburg, P. Hungler and A. Etemad,
“Attentive Cross-modal Connections for Deep Multimodal Wearable-
based Emotion Recognition,” in Proc. Int. Conf. Affect. Comput. Intell.
Interact. Workshops Demos (ACIIW), Nara, Japan, 2021, pp. 01-05.

[4] M. M. Bradley and P. J. Lang, “Measuring Emotion: the Self-Assessment
Manikin and the Semantic Differential,” in J. Behav. Ther. Exp. Psychi-
atry, vol. 25, no. 1, pp. 49-59, Mar 1994.

[5] J. Choi, G. Hwang, J. S. Lee, M. Ryu, and S. J. Lee, “Weighted
Knowledge Distillation of Attention-LRCN for Recognizing Affective
States from PPG Signals,” in Expert Syst. Appl., vol. 233, no. 120883,
pp. 1-10, 2023.

[6] J. Choi, J. S. Lee, M. Ryu, G. Hwang, G. Hwang, and S. J. Lee,
“Attention-LRCN: Long-term Recurrent Convolutional Network for
Stress Detection from Photoplethysmography,” 2022, pp. 1-6.

[7] A. de Souza, M. B. Melchiades, S. J. Rigo and G. d. O. Ramos,
“MoStress: a Sequence Model for Stress Classification,” in Proc. Int.
Jt. Conf. Neural Networks (IJCNN), Padua, Italy, 2022, pp. 1-8.

[8] Y. Ding, N. Robinson, S. Zhang, Q. Zeng and C. Guan, “TSception:
Capturing Temporal Dynamics and Spatial Asymmetry From EEG for
Emotion Recognition,” in IEEE Trans. Affect., vol. 14, no. 3, pp. 2238-
2250, 1 July-Sept 2023.

[9] P. Garg, J. Santhosh, A. Dengel, and S. Ishimaru, “Stress Detection by
Machine Learning and Wearable Sensors,” in Proc. Int. Conf. Intell. User
Interfaces (IUI), College Station, TX, USA, 2021. pp. 43-45.

[10] Z. Guo, C. Ding, X. Hu, and C. Rudin, “A Supervised Machine
Learning Semantic Segmentation Approach for Detecting Artifacts in
Plethysmography Signals from Wearables,” Physiol. Meas., vol. 42, no.
125003, pp. 1-17, 2021.

[11] Z. He, Y. Zhong and J. Pan, “Joint Temporal Convolutional Networks
and Adversarial Discriminative Domain Adaptation for EEG-Based
Cross-Subject Emotion Recognition,” in IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), Singapore, 2022, pp. 3214-3218.

[12] L. Huynh, T. Nguyen, T. Nguyen, S. Pirttikangas, and P. Siirtola, “Stress-
NAS: Affect State and Stress Detection Using Neural Architecture
Search,” in Proc. ACM Int. Symp. Wearable Comput. (ISWC), Virtual,
USA, 2021.

[13] Q. Zhou, Z. Qu, S. Guo, B. Luo, J. Guo, Z. Xu, R. Akerkar, “On-Device
Learning Systems for Edge Intelligence: A Software and Hardware
Synergy Perspective,” in IEEE Internet Things J., vol. 8, no. 15, pp.
11916-11934, 1 Aug.1, 2021.

[14] L. Jin and E. Y. Kim, “E-EmotiConNet: EEG-based Emotion Recogni-
tion with Context Information,” in Proc. Int. Jt. Conf. Neural Networks
(IJCNN), Padua, Italy, 2022, pp. 1-8.

[15] V. M. Joshi and R. B. Ghongade, “EEG Based Emotion Detection Using
Fourth Order Spectral Moment and Deep Learning,” in Biomed. Signal
Process. Control., vol. 68, no. 102755, pp. 1-12, 2021.
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